Face Detection Based on Generic Local Descriptors and Spatial Constraints
نویسندگان
چکیده
In this paper we present an algorithm for face detection that is based on generic local descriptors (e.g. eyes). A generic descriptor captures the distribution of individual descriptors over a set of samples (training images). This distribution is assumed to be a Gaussian mixture model and is learnt using the minimum description length principle (MDL). A descriptor of an unknown image may then be classified as one of the generic local descriptors. Robustness is achieved by using spatial constraints between locations of descriptors. Experiments show very promising results.
منابع مشابه
Local Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملSURF-Face: Face Recognition Under Viewpoint Consistency Constraints
Introduction. Recently, a comparative study in [2] has shown the superior performance of local features for face recognition in unconstrained environments. Due to the global integration of Speeded Up Robust Features (SURF) [1], the authors claim that it stays more robust to various image perturbations than the more locally operating SIFT descriptor. However, no detailed analysis for a SURF base...
متن کاملDetection of Video-Based Face Spoofing Using LBP and Multiscale DCT
Despite the great deal of progress during the recent years, face spoofing detection is still a focus of attention. In this paper, an effective, simple and time-saving countermeasure against video-based face spoofing attacks based on LBP (Local Binary Patterns) and multiscale DCT (Discrete Cosine Transform) is proposed. Adopted as the low-level descriptors, LBP features are used to extract spati...
متن کاملThe Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection
The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...
متن کامل